30 research outputs found

    Cellular Localization of Aquaporin-1 in the Human and Mouse Trigeminal Systems

    Get PDF
    Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction

    Identification of a HIV Gp41-Specific Human Monoclonal Antibody With Potent Antibody-Dependent Cellular Cytotoxicity

    Get PDF
    Antibody-Dependent Cellular Cytotoxicity (ADCC) is a major mechanism of protection against viral infections in vivo. Identification of HIV-1-specific monoclonal antibodies (mAbs) with potent ADCC activity may help develop an effective HIV-1 vaccine. In present study, we isolated such human mAb, designated E10, from an HIV-1-infected patient sample by single B cell sorting and single cell PCR. E10 bound to gp140 trimer and linear peptides derived from gp41 membrane proximal external region (MPER). E10 epitope (QEKNEQELLEL) overlapped with mAb 2F5 epitope. However, E10 differentiated from 2F5 in neutralization breadth and potency, as well as ADCC activity. E10 showed low neutralization activity and narrow spectrum of neutralization compared to 2F5, but it mediated higher ADCC activity than 2F5 at low antibody concentration. Fine mapping of E10 epitope may potentiate MPER-based subunit vaccine development

    Voluntary disclosure in the biotechnology industry

    No full text
    The aim of this project is to study the unique characteristics of the biotechnology industry in the United States and their effects on voluntary disclosure

    Performance Investigation on Different Designs of Superhydrophobic Surface Texture for Composite Insulator

    No full text
    To investigate the superhydrophobic properties of different surface textures, nine designs of textures with micro-nanostructures were produced successfully using the laser engraving technique on the surfaces of composite insulator umbrella skirt samples made of silicon rubber. The optimal parameters of the texture designs to give rise to the best hydrophobicity were determined. The surface morphology, abrasion resistance, corrosion resistance, self-cleaning and antifouling property of the different textured surfaces as well as water droplets rolling on the textured surfaces were studied experimentally using a contact angle meter, scanning electron microscope, three-dimensional topography meter and high-speed camera system. It was found that the diamond column design with optimal parameters has the best superhydrophobicity and overall performance. The most remarkable advantage of the optimal diamond column design is its robustness and long-term superhydrophobicity after repeated de-icing in harsh conditions. The reported work is an important step towards achieving superhydrophobic surface without coating for outdoor composite insulator in practical applications

    Preserving Differential Privacy in Deep Learning Based on Feature Relevance Region Segmentation

    No full text
    In the era of big data, deep learning techniques provide intelligent solutions for various problems in real-life scenarios. However, deep neural networks depend on large-scale datasets including sensitive data, which causes the potential risk of privacy leakage. In addition, various constantly evolving attack methods are also threatening the data security in deep learning models. Protecting data privacy effectively at a lower cost has become an urgent challenge. This paper proposes an Adaptive Feature Relevance Region Segmentation (AFRRS) mechanism to provide differential privacy preservation. The core idea is to divide the input features into different regions with different relevance according to the relevance between input features and the model output. Less noise is intentionally injected into the region with stronger relevance, and more noise is injected into the regions with weaker relevance. Furthermore, we perturb loss functions by injecting noise into the polynomial coefficients of the expansion of the objective function to protect the privacy of data labels. Theoretical analysis and experiments have shown that the proposed AFRRS mechanism can not only provide strong privacy preservation for the deep learning model, but also maintain the good utility of the model under a given moderate privacy budget compared with existing methods

    Performance investigation on different designs of superhydrophobic surface texture for composite insulator

    No full text
    To investigate the superhydrophobic properties of different surface textures, nine designs of textures with micro-nanostructures were produced successfully using the laser engraving technique on the surfaces of composite insulator umbrella skirt samples made of silicon rubber. The optimal parameters of the texture designs to give rise to the best hydrophobicity were determined. The surface morphology, abrasion resistance, corrosion resistance, self-cleaning and antifouling property of the different textured surfaces as well as water droplets rolling on the textured surfaces were studied experimentally using a contact angle meter, scanning electron microscope, three-dimensional topography meter and high-speed camera system. It was found that the diamond column design with optimal parameters has the best superhydrophobicity and overall performance. The most remarkable advantage of the optimal diamond column design is its robustness and long-term superhydrophobicity after repeated de-icing in harsh conditions. The reported work is an important step towards achieving superhydrophobic surface without coating for outdoor composite insulator in practical applications.</p

    A novel signature for predicting prognosis and immune landscape in cutaneous melanoma based on anoikis-related long non-coding RNAs

    No full text
    Abstract Anoikis is a unique form of apoptosis associated with vascularization and distant metastasis in cancer. Eliminating anoikis resistance in tumor cells could be a promising target for improving the prognosis of terminal cancer patients. However, current studies have not elaborated on the prognosis effect of anoikis-related long non-coding RNAs (lncRNAs) in cutaneous melanoma. Pre-processed data, including RNA sequences and clinical information, were retrieved from TCGA and GTEx databases. After a series of statistical analyses, anoikis-related lncRNAs with prognostic significance were identified, and a unique risk signature was constructed. Risk scores were further analyzed in relation to the tumor microenvironment, tumor immune dysfunction and exclusion, immune checkpoint genes, and RNA methylation genes. The indicators were also used to predict the potentially sensitive anti-cancer drugs. An anoikis-related lncRNAs risk signature consisting of LINC01711, POLH-AS1, MIR205HG, and LINC02416 was successfully established in cutaneous melanoma. Overall survival and progression-free survival of patients were strongly linked with the risk score, independently of other clinical factors. The low-risk group exhibited a more beneficial immunological profile, was less affected by RNA methylation, and was more sensitive to the majority of anti-cancer drugs, all of which indicated a better prognostic outcome. The 4 hub lncRNAs may be fundamental to studying the mechanism of anoikis in cutaneous melanoma and provide personalized therapy for salvaging drug resistance
    corecore